Quantitative Fourier Analysis of Approximation Techniques: Part II—Wavelets
نویسندگان
چکیده
In a previous paper, we proposed a general Fourier method that provides an accurate prediction of the approximation error, irrespective of the scaling properties of the approximating functions. Here, we apply our results when these functions satisfy the usual two-scale relation encountered in dyadic multiresolution analysis. As a consequence of this additional constraint, the quantities introduced in our previous paper can be computed explicitly as a function of the refinement filter. This is, in particular, true for the asymptotic expansion of the approximation error for biorthonormal wavelets as the scale tends to zero. One of the contributions of this paper is the computation of sharp, asymptotically optimal upper bounds for the least-squares approximation error. Another contribution is the application of these results to B-splines and Daubechies scaling functions, which yields explicit asymptotic developments and upper bounds. Thanks to these explicit expressions, we can quantify the improvement that can be obtained by using B-splines instead of Daubechies wavelets. In other words, we can use a coarser spline sampling and achieve the same reconstruction accuracy as Daubechies: Specifically, we show that this sampling gain converges to as the order tends to infinity.
منابع مشابه
Smoothing Minimally Supported Frequency (MSF) Wavelets : Part II
The main purpose of this paper is to give a procedure to “mollify” the low-pass filters of a large number of Minimally Supported Frequency (MSF) wavelets, so that the smoother functions obtained in this way are also low-pass filters for an MRA. Hence, we are able to approximate (in the L2-norm) MSF wavelets by wavelets with any desired degree of smoothness on the Fourier transform side. Althoug...
متن کاملDelft University of Technology A Highly Efficient Shannon Wavelet Inverse Fourier Technique for Pricing European Options
In the search for robust, accurate, and highly efficient financial option valuation techniques, we here present the SWIFT method (Shannon wavelets inverse Fourier technique), based on Shannon wavelets. SWIFT comes with control over approximation errors made by means of sharp quantitative error bounds. The nature of the local Shannon wavelets basis enables us to adaptively determine the proper s...
متن کاملA Highly Efficient Shannon Wavelet Inverse Fourier Technique for Pricing European Options | SIAM Journal on Scientific Computing | Vol. 38, No. 1 | Society for Industrial and Applied Mathematics
In the search for robust, accurate, and highly efficient financial option valuation techniques, we here present the SWIFT method (Shannon wavelets inverse Fourier technique), based on Shannon wavelets. SWIFT comes with control over approximation errors made by means of sharp quantitative error bounds. The nature of the local Shannon wavelets basis enables us to adaptively determine the proper s...
متن کاملA Highly Efficient Shannon Wavelet Inverse Fourier Technique for Pricing European Options
In the search for robust, accurate, and highly efficient financial option valuation techniques, we here present the SWIFT method (Shannon wavelets inverse Fourier technique), based on Shannon wavelets. SWIFT comes with control over approximation errors made by means of sharp quantitative error bounds. The nature of the local Shannon wavelets basis enables us to adaptively determine the proper s...
متن کاملFault Strike Detection Using Satellite Gravity Data Decomposition by Discrete Wavelets: A Case Study from Iran
Estimating the gravity anomaly causative bodies boundary can facilitate the gravity field interpretation. In this paper, 2D discrete wavelet transform (DWT) is employed as a method to delineate the boundary of the gravity anomaly sources. Hence, the GRACE’ satellite gravity data is decomposed using DWT. DWT decomposites a single approximation coefficients into four distinct components: the appr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999